Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.20.485044

ABSTRACT

RNA interference is a natural antiviral mechanism that could be harnessed to combat SARS-CoV-2 infection by targeting and destroying the viral genome. We screened lipophilic small-interfering RNA (siRNA) conjugates targeting highly conserved regions of the SARS-CoV-2 genome and identified leads targeting outside of the spike-encoding region capable of achieving [≥]3-log viral reduction. Serial passaging studies demonstrated that a two-siRNA combination prevented development of resistance compared to a single-siRNA approach. A two-siRNA combination delivered intranasally protected Syrian hamsters from weight loss and lung pathology by viral infection upon prophylactic administration but not following onset of infection. Together, the data support potential utility of RNAi as a prophylactic approach to limit SARS-CoV-2 infection that may help combat emergent variants, complement existing interventions, or protect populations where vaccines are less effective. Most importantly, this strategy has implications for developing medicines that may be valuable in protecting against future coronavirus pandemics.


Subject(s)
COVID-19 , Weight Loss
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.13.464254

ABSTRACT

Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures effective against SARS-CoV-2 variants and future spillovers of other sarbecoviruses. Here we describe the isolation and characterization of a human monoclonal antibody, designated S2K146, broadly neutralizing viruses belonging to all three sarbecovirus clades known to utilize ACE2 as entry receptor and protecting therapeutically against SARS-CoV-2 beta challenge in hamsters. Structural and functional studies show that most of the S2K146 epitope residues are shared with the ACE2 binding site and that the antibody inhibits receptor attachment competitively. Viral passaging experiments underscore an unusually high barrier for emergence of escape mutants making it an ideal candidate for clinical development. These findings unveil a key site of vulnerability for the development of a next generation of vaccines eliciting broad sarbecovirus immunity.

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.21.21259286

ABSTRACT

SARS-CoV-2 evolution threatens vaccine- and natural infection-derived immunity, and the efficacy of therapeutic antibodies. Herein we sought to predict Spike amino acid changes that could contribute to future variants of concern. We tested the importance of features comprising epidemiology, evolution, immunology, and neural network-based protein sequence modeling. This resulted in identification of the primary biological drivers of SARS-CoV-2 intra-pandemic evolution. We found evidence that resistance to population-level host immunity has increasingly shaped SARS-CoV-2 evolution over time. We identified with high accuracy mutations that will spread, at up to four months in advance, across different phases of the pandemic. Behavior of the model was consistent with a plausible causal structure wherein epidemiological variables integrate the effects of diverse and shifting drivers of viral fitness. We applied our model to forecast mutations that will spread in the future, and characterize how these mutations affect the binding of therapeutic antibodies. These findings demonstrate that it is possible to forecast the driver mutations that could appear in emerging SARS-CoV-2 variants of concern. This modeling approach may be applied to any pathogen with genomic surveillance data, and so may address other rapidly evolving pathogens such as influenza, and unknown future pandemic viruses.

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.06.438709

ABSTRACT

An ideal anti-SARS-CoV-2 antibody would resist viral escape, have activity against diverse SARS-related coronaviruses, and be highly protective through viral neutralization and effector functions. Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S309, the parental antibody of the late-stage clinical antibody VIR-7831. We observe a tradeoff between SARS-CoV-2 in vitro neutralization potency and breadth of binding across SARS-related coronaviruses. Nevertheless, we identify several neutralizing antibodies with exceptional breadth and resistance to escape, including a new antibody (S2H97) that binds with high affinity to all SARS-related coronavirus clades via a unique RBD epitope centered on residue E516. S2H97 and other escape-resistant antibodies have high binding affinity and target functionally constrained RBD residues. We find that antibodies targeting the ACE2 receptor binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency, but we identify one potent RBM antibody (S2E12) with breadth across sarbecoviruses closely related to SARS-CoV-2 and with a high barrier to viral escape. These data highlight functional diversity among antibodies targeting the RBD and identify epitopes and features to prioritize for antibody and vaccine development against the current and potential future pandemics.

5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.07.438818

ABSTRACT

The recent emergence of SARS-CoV-2 variants of concern (VOC) and the recurrent spillovers of coronaviruses in the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here, we describe a human monoclonal antibody (mAb), designated S2X259, recognizing a highly conserved cryptic receptor-binding domain (RBD) epitope and cross-reacting with spikes from all sarbecovirus clades. S2X259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.1.1.7, B.1.351, P.1 and B.1.427/B.1.429 VOC, as well as a wide spectrum of human and zoonotic sarbecoviruses through inhibition of ACE2 binding to the RBD. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses a remarkably high barrier to the emergence of resistance mutants. We show that prophylactic administration of S2X259 protects Syrian hamsters against challenges with the prototypic SARS-CoV-2 and the B.1.351 variant, suggesting this mAb is a promising candidate for the prevention and treatment of emergent VOC and zoonotic infections. Our data unveil a key antigenic site targeted by broadly-neutralizing antibodies and will guide the design of pan-sarbecovirus vaccines.


Subject(s)
Zoonoses
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.03.438258

ABSTRACT

Investigating the mechanisms of SARS-CoV-2 cellular infection is key to better understand COVID-19 immunity and pathogenesis. Infection, which involves both cell attachment and membrane fusion, relies on the ACE2 receptor that is paradoxically found at low levels in the respiratory tract, suggesting that additional mechanisms facilitating infection may exist. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding Ig-like lectin 1 (SIGLEC1) function as auxiliary receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the N-terminal domain (NTD) or to the conserved proteoglycan site at the base of the Receptor Binding Domain (RBD), while poorly neutralizing infection of ACE2 over-expressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the Receptor Binding Motif (RBM), while potently neutralizing infection of ACE2 over-expressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike promoting cell-to-cell fusion. Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.09.434607

ABSTRACT

VIR-7831 and VIR-7832 are dual action monoclonal antibodies (mAbs) targeting the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). VIR-7831 and VIR-7832 were derived from a parent antibody (S309) isolated from memory B cells of a 2003 severe acute respiratory syndrome coronavirus (SARS-CoV) survivor. Both mAbs contain an LS mutation in the Fc region to prolong serum half-life and potentially enhance distribution to the respiratory mucosa. In addition, VIR-7832 encodes an Fc GAALIE mutation that has been shown previously to evoke CD8+ T-cells in the context of an in vivo viral respiratory infection. VIR-7831 and VIR-7832 potently neutralize live wild-type SARS-CoV-2 in vitro as well as pseudotyped viruses encoding spike protein from the B.1.1.7, B.1.351 and P.1 variants. In addition, they retain activity against monoclonal antibody resistance mutations that confer reduced susceptibility to currently authorized mAbs. The VIR-7831/VIR-7832 epitope does not overlap with mutational sites in the current variants of concern and continues to be highly conserved among circulating sequences consistent with the high barrier to resistance observed in vitro. Furthermore, both mAbs can recruit effector mechanisms in vitro that may contribute to clinical efficacy via elimination of infected host cells. In vitro studies with these mAbs demonstrated no enhancement of infection. In a Syrian Golden hamster proof-of concept concept wildtype SARS-CoV-2 infection model, animals treated with VIR-7831 had less weight loss, and significantly decreased total viral load and infectious virus levels in the lung compared to a control mAb. Taken together, these data indicate that VIR-7831 and VIR-7832 are promising new agents in the fight against COVID-19.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Weight Loss , Respiratory Tract Infections
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.07.20245431

ABSTRACT

Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays to be utilized in concert with clinical trials to establish correlates of risk and protection. This need has led to the appearance of a variety of neutralization assays used by different laboratories and companies. Using plasma samples from COVID-19 convalescent individuals with mild-to-moderate disease from a localized outbreak in a single region of the western US, we compared three platforms for SARS-CoV-2 neutralization: assay with live SARS-CoV-2, pseudovirus assay utilizing lentiviral (LV) and vesicular stomatitis virus (VSV) packaging, and a surrogate ELISA test. Vero, Vero E6, HEK293T cells expressing human angiotensin converting enzyme 2 (hACE2), and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 (TMPRSS2) were evaluated. Live-virus and LV-pseudovirus assay with HEK293T cells showed similar geometric mean titers (GMTs) ranging 141-178, but VSV-pseudovirus assay yielded significantly higher GMT (310 95%CI 211-454; p < 0.001). Fifty percent neutralizing dilution (ND50) titers from live-virus and all pseudovirus assay readouts were highly correlated (Pearson r = 0.81-0.89). ND50 titers positively correlated with plasma concentration of IgG against SARS-CoV-2 spike and receptor binding domain (RBD) (r = 0.63-0.89), but moderately correlated with nucleoprotein IgG (r = 0.46-0.73). There was a moderate positive correlation between age and spike (Spearmans rho=0.37, p=0.02), RBD (rho=0.39, p=0.013) and nucleoprotein IgG (rho=0.45, p=0.003). ND80 showed stronger correlation with age than ND50 (ND80 rho=0.51 (p=0.001), ND50 rho=0.28 (p=0.075)). Our data demonstrate high concordance between cell-based assays with live and pseudotyped virions.


Subject(s)
Vesicular Stomatitis , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL